
On a linear differential game of evasion 691 

is stabilizable and we can choose P, so as to fulfill the conditions 

P* 3 Pa, Q, I> Q"> Q = xP, (0 < x < 1) 

We set x = y - z and we write the model’s equation as 

dw J dt = Aw + Bu, - Bv,, u* E P*, v* E Q 

If the initial position {to, Y,, zO} is such that it is impossible to bring system (2.14) into 
the ~-neighborhood of point s = 0 in finite time by a choice of control rnE (i- x) E,, 

then to retain the position {t, w [t]} on bridge WE7 it is sufficient to choose u, such 

that u, - L’* E (1 - x) P,. Thus, in the given example all the needed constructions 

connected with the bridge Wz turn out to be very simple,although the description of 

the bridge itself remains unknown. 
The author thanks N, N. Krasovskii for posing the problem and for valuable advice, 
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We use the methods of the theory of bifurcation and piecewise linear approxima- 

tion to the characteristic with a falling segment, in the qualitative investigation 

of a system which is of practical interest, We trace the possible bifurcations and 
follow the behavior of the bifurcation curves. The system has been studied by a 

number of authors, using various approximations [l - 91, however none of them 
gave a complete qualitative investigation. 

1. Equation, of motion. We consider the system 
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z* = y - q (z), y- = I‘, I; CE 0 - hx - ?, (0 > 0, h > 0) (1.1) 

where Y, (4 is a nonlinear function containing a falling segment. Let us approximate 
cp (~1 with a piecewise linear function consisting of three linear segments: a falling seg- 

ment of slope k = - a2 < 0, and two rising segments of slope k = a1 > 0. Under this 
approximation the phase space splits into three regions in each of which the system is 

linear. Regions I and I I I contain the rising branches of the characteristic and region 
I I contains the falling segment (Fig. 1). 

2. States of equilibrium, Partitioning of the prrrmster space 
according to the number and character of the states of squilib- 
rium, Either one, or three coarse states of equilibrium are possible. In the case of a 

single state of equilibrium we have a focus (node) 
which is always stable in the regions I and I I I 

and unstable in I I, provided that a* > 1. In the 
case of three states of equilibrium we have foci 

(nodes) in the regions I and I I I and a saddle in 
the region I I, and they are always stable. The 
straight line segments G -- s,h -+ g1 andcr ~= r& -1 
JJ~ (I~, ?jl and J+, vz are the coordinates of the cor- 

_ ner points of the characteristic) form in the plane 

Fig. 1 
ho for h\cza, a discriminant curve separating 
the region of three states from the region of a sin- 

gle state of equilibrium. The points lying on the discriminant curve have the correspon- 
ding matched state of equilibrium of the saddle-focus or saddle-node type, while the 
corner point (h _ CQ) has the corresponding unstable stationary segment coincidingwith 

the falling segment of the characteristic. When CQ < 1 t we have no closed trajectories 
and the only possible bifurcations correspond to the appearance and disappearance ofthe 

states of equilibrium. In what follows, we shall concern ourselves with the case xe 1b 1 
and (nE -- I )” < ‘ICI, which admits various types of bifurcations. 

3. Bifur~ation8 of the state8 of equilibriums 3.1. Stability 
of the state of equilibrium on the matching line. Let the line CI- 
?Ls -.- j, ‘- 0 pass through the corner point (.rl, .jl 7 ) of the characteristic at the boundary 

separating the regions I and I I, and let A >liq (CL, -i- 1)" > cza, Then the region I will 

be filled with segments of the trajectories of the stable focus, and the region 11 with the 

trajectories of the unstable focus. kt us introduce the positive coordinates s,) and d, 
on the line joining the regions I and II (Fig.1). The transformations sO -‘s .+ along rhe 

trajectories of the region I and sI ~- s,, along the trajectories of the region II can be 

written as s, S(, csp I--- h,n / a,], ?I, s, c'sl' [ h,.n i (0~1 (3.1) 

Here wi and -- Wi (i 1,“) denote the imaginary and the real parts of the roots of the 
characteristic equation for the regions I and I I, respectively. The state of equilib~um 
will be represented by a matched center (9, G soi, if !I, i a1 : h, i o2 = 0 or, in the 
expanded form, if h )ib’E (CLIUZ -+ 1) (I;(, CL9 -j- 2)-’ 

The focus on the matching line will be stable (s,, -< SC,) when h > h+ , and unstable 
(S,, > s,J when h < h+. 
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3.2. Emergence of a limit cycle from the focus-type state of 
equilibrium when the latter passes through the matching line ‘ 

We shall show that not more than a single limit cycle can exist in the regions I and II, 

Let us consider the transformation s,, - s, along the trajectories of the regions I and I I. 

For region I we have 6n 

where 6, is the distance from the boundary separating regions I and I I, to the state of 
equilibrium, while X and 5 are monotonic functions (which increase or decrease, de- 

pending on the sign of 6,). The transformation along the trajectories of the region I I 
can be written out in an analogous manner, 

Computing the derivative of the successor function, we obtain 

dS, 1 ds, -= soso -l exp I- 2 @I71 + h&l 

h, = (1 + al) / 2 > 0, hz = (1 - a,) / 2 < 0 

(3.3) 

where z, and 3 denote the times of motion along the trajectories of the regions I and 

I I, respectively. 
Let the state of equilibrium lie in the region I. Then for the periodic solution S,= s,, 

the time z, decreases to the value n / ol), with increasing SO , the time 0 increases to 

n / (4, and the derivative (3.3) grows. For this reason the successor function can inter- 
sect the bisectrix at not more than two points and the stationary point with the smaller 
coordinate must be stable, while that with the larger coordinate must be unstable. Since 
it was assumed that the state of equilibrium lies in the region I and is a stable focus 

which cannot however be encircled by a stable cycle, therefore in the regions I and II 

we cannot have more than one cycle and this cycle must be unstable. 
let now the state of equilibrium lie in the region I I. Then the time ‘tl increases 

with increasing so , while 3 decreases. In an analogous manner we find, that in this case 
we cannot have more than one stable limit cycle. 

let the line L = 0 pass through the upper corner point of the characteristic, We 
shall consider two cases, 

1). h > h+. The matched focus is stable. The trajectory passing through the 
lower corner point winds, by virtue of (3. l), towards the state of equilibrium as t --f DO 
This trajectory remains spiral under small displacements of the line L = 0. If after such 

a displacement the state of eq~~brium enters the region I I, it becomes unstable and as 
a consequence, at least one stable limit cycle appears. As we said before, this cycle is 

unique. Lot the state of equilibrium enter the region I as the result of a displacement. 
Since in the combined region I and II not more than one cycle can exist and the focus 
remains stable, therefore no cycles appear. 

2). h < bf. In the analogous manner we find that if, as the result of a small dis- 
placement, the state of equilibrium enters the region I I, then no cycles appear, while 
the entry into the region I is accompanied by the appearance of an unstable cycle. 

3.3. Emergence of limit cycles (single or double) from the 
boundary of the region filled with closed trajectories. Consider 
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the transformation -‘” -= f (s,,) consisting of two segments: S, = 9 (s,,) along the tra- 
jectory of the regions I and II and 5, =1 $J (sO) in all regions. We shall show that f (so) 
is differentiable at the matching point of the two segments, The transformation s0 + s1 

along the trajectories of the region I is given by (3.2). and the transformations s1 + x2. 
sz ---f ~3 and sQ ---f SO can be written in the same manner. The value of IS” i ds, for the 
function 9 (so) is given in (3.3). and for the function Q (so) it is 

dS, / ds, --= s,s- exp t- 2hr (Tl + 73) - 2h, (T2 + T‘?)] (3.4) 

Here tl and zs denote the times of motion in the regions I and I I I, while rz and Q 
denote the times of motion in the upper and lower part of the region I I. bet so = so* 

be a limiting value separating the intervals of definition of the transformations cp (so) 
and $ (so). The derivatives for v and 11) coincide at the matching point; when so = 3,’ 
we have ‘r3 = 0, 3 = O* and z, + ~4 -= 0”. Let now the line L = (t pass through the 
corner point ~1, yl of the characteristic and h = A+. We shall show that there are no 
limit cycles, 

The successor function at the soso-plane consists of a segment of the bisectrix s,m 
so < so* and the curve S, c= ‘II, (so). The function s 0 -= f (so) is differentiable at the 
matching point. consequently at h = A+ we have dr, i ds, = t (from (3.4) we also ob- 
tain that @S,I d.$ < 0). When the value of so increases from sSii, the exponential in- 

dex in (3.4) decreases monotonously from its zero value at the matching point (xl == 
Collst, %a increases and /Lo > 0; rz and t4 decrease and hz < 0). The curve 8, == 11 (sJ 
has a single point s,, > SO* of intersection with the bisectrix and no other points of inter- 
section (or contact) are possible. The curve for so = SO* is situated below the bisectrix. 
The spirals constructed by joining the trajectories in the regions I - I II, wind onto the 
boundary of the region filled with the closed curves matched from the trajectories in the 

regions I and I I. 
Under a small variation of the parameters (r and J. the successor function of the alt- 

ered system lies in a close vicinity of the successor function of the initial system. On 

moving along the half-line L, = o (L, zz CT - kc, - y1 -. 0, h > CLJ from the value 

h = h+ in the direction of decreasing h we find, that the successor function for so < .SY* 
will be represented by a straight line passing through the coordinate origin above the 

bisectrix, and for so >, SO” by the curve i O = $ (s”; intersecting the bisectrix once (at 

the matching point &, / &,,’ + 0 when 3, =-= k* and d -== a+). A unique, stable limit 

cycle appears at the boundary of the region filled with the closed curves. If we now de- 

crease the value of CT ) the initial point of the successor function displaces from the CO- 
ordinate origin along the axis su (the smallest value of s0 corresponds to the trajectory 
entering the stable focus and tangent to the matching line at c-o = O), and the successor 
function 8, = f (so) will intersect the bisectrix twice (a unique unstable limit cycle 
emerges from the focus as the latter is displaced from the matching line). If we now 
move along the half-line from h = h+ in the direction of increasing a and reduce the 

value of a, then the successor function will wholly lie below the bisectrix. From the 
properties of ~ntin~ty and differentiability of the successor function it follows that in 

any small semi-neighborhood of the point h’, a+ (below the half-line) values of h and 
0 exist for which the successor function is tangent to the bisectrix, and on the phase plane 

a corresponding double cycle appears. Such points form a bifurcation curve which emer- 

ges from the point h+, a+ on the half-line I,, -~ 0. 
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Tangential contact is impossible when s0 < so*, since not more than one cycle can 

exist in the combined regions I and I I. Therefore, when the parameters are varied, a 

double cycle emerges at s0 -L so* from the boundary of the region filled with closed 

trajectories. 

3.4. Generation of the limit cycles from the ends of the sta- 

tionary segment. let the straight line L = 0 and the falling part of the charac- 

teristic coincide (l.=az). The falling part of the characteristic will represent the unsta- 

ble stationary segment and the regions I and I I will be filled, by virtue of the condi- 
tion (1x1 - 1)’ < ha, (see Sect.2), with the trajectories of the stable foci. We can easily 

obtain the following explicit expression for the identity transformation of s,, 

8, = so exp (- 2h,sc i q) + 6 (a2 - 1) I1 + exp (- h, n / oI)l 

where 15 is the width of the region I I. The transformation has a single stable stationary 

point. 
Let us now turn the line L = 0 around an arbitrary point on the falling segment, in 

the anticlockwise direction. The stationary segment collapses, a saddle appears in the 
region II and stable foci in the regions I and II I. Let h = az - E, where E > 0 and 

is small. Restricting ourselves to the powers of e not greater than the first, we obtain 
the angular coordinates of the separatrices: [ - 1 + E / (a,- I)] for the a -separatrices 
and [ - a2 - E / (a2 - I)1 for the o-separatrices. When k = a,, the trajectories emer- 
ging from the point at which a saddle appears when a # 0 , wind onto the limit cycle. 

The CY -separatrices of the saddle in the region I I lie, when E > 0 and small, in a near 

neighborhood of the trajectories emerging from the same point at E = 0, consequently 
the a-separatrices also wind onto the stable limit cycle which embraces all states of 
equilibrium. Therefore the o-separatrices can only be twisted from the unstable cycles 

lying in the regions I - II and II - I I I and embracing the stable foci, appearing in the 

regions I and I I I, respectively, during the rotation of the straight line. Thus, when the 
line L = 0 rotates, stable foci emerge from the end of the stationary segment embraced 

by the unstable cycles (the foci and the cycles appear simultaneously). Near each focus 

we find a unique limit cycle. This follows from the fact that thederivative of the suc- 

cessor function constructed with the help of the saddle-type trajectory in the region I I 
can also be given by the expression (3.3) with a single difference, namely that as s0 in- 
creases, 9 -+ 03. 

4. Bifurcation of the wparatrices. 4.1. Location of the bifur- 
cation curve for the separatrix loop. Let the line L = 0 pass,at (J = u,, 

and fixed h = A* , through the upper corner point of the characteristic. We shall vary 
o by the amount x (SC = c,, - o) and show that the separatrix loop cannot arise as the 
result of the change in the value of (5. Let so’ and SI’ be the segments intercepted by 
the a- and w-separtrices of the linear saddle in the region I I on the boundary separa- 
ting the regions I from I I. bet also s0 and s1 be the coordinates as defined by the trans- 
formation (3.2), on the same boundary. From (3.2) follows 

Sl = 6,x [5-l (so i &)I (4.1) 

where 5-l is the inverse of 5. The quantities h, and a1 and consequently the functions 
X and 5 , are independent of u . 
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Since the characteristic is a piecewise linear function, therefore when o is varied, 
the quantities SO', sl' and ,a0 are ~o~rtio~l to. “rl 

so’ = I’&, 60 = YlX (4.2) - 
s1’ = Q” (4.3) 

Matching the trajectories at the boundary between the regions I and I I (assuming that 
s&f= sO) we obtain from (4,l) and (4.2) 

31 = y1q [5-l (Yo i Yl)I = y$+ 

while from (4.3) and (414) we have 

(4.4) 

Thus for a fixed h the quantities s1 and s 1’ are in coustant ratio and the loop of the 
separatrix s1 = sll cannot occur when o varies. 

If the line L = 0 passes through the middle of the falling segment and h -= h, is 

such that a separatrix loop exists in the upper part, then by the symmetry of the phase 
space a separatrix loop must also exist in the lower part. Moreover the condition ys/yz == 

i holds. Since y3 and y2 do not depend on u, the latter condition holds and both loops 
are preserved at h = hl for all values of TV inside the discriminant curve. 

4. 2. Stability of the separatrix loops. We determine the stability of 
the separatrix loops by the sign of the saddle parameter when the saddle is situated with- 
in or at the boundary of the region II (Theorem 44 of [lo] is transposed to the case when 

the matched loop contains an analytic saddle). In the present case a,> 1 , the saddle 
parameter is positive (PX’ + Qyr=az-- 1) and the separatrix loops both inside and out- 

side are unstable. On varying the parameters a unique unstable limit cycle either con- 
tracts towards the loop or expands away from it (Theorem 47 of [lOJ is applied to the 
case when the matched loop contains an analytic saddle). 

6. Qurlltrtive 8ttuQturas of ths partitioned phrte rprce. 5.1. 
The phase diagrams corresponding to such values of the parameters u’, h and a”, h, that 
the lines CT’---h.z --y=O and an- Ax- y--O which are disposed ~mmetri~lly about the 
middle of the failing segment of the characteristic, are themselves symmetrical with 

respect to that characteristic. For this reason we can study the partitioning of the phase 
space by considering only the part of the Aa -space that lies either above or below the 

axis of symmetry Q - hz, - y. = 0, where r0 and y. are the coordinates of the middle 

point of the falling segment. 
5.2, Let us investigate the structure of the partition of the phase space and the se- 

quence of bifurcations transforming one structure into another, for the values of the para- 
meters along the line of bifurcation G - Lx1 - y1 = 0 (x1 and yl are the coordinates 

of the upper corner point of the characteristic). 
i.,et k > hb (see Fig. Za), The state of equilibrium is a stable focus on the matching 

line and all trajectories advance towards it. When h = k+ (Fig. 2b), a region appears, 
filled with closed trajectories. All trajectories matched over the regions I - III wind 

onto the boundary of this region. When a2 < h < il+ (Fig. Oc), the focus of the match- 

ing line is unstable and, when the value of a decreases from h h+, a stable limit cycle 

grows from the boundary of the region filled with the closed trajectories, When A. ; a2 
(Fig. 2d) (the edge of the discriminant curve), the falling segment of the characteristic 
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coincides with the line I, 0 and an unstable stationary segment appears within the 
stable limit cycle, On further decrease in the value of s\, along the discriminant curve, 
two states of equilibrium appear: a matched saddle-focus, and a stable focus in the re- 

gion I I I. A focus and an unstable limit cycle appear together from the end of the sta - 
tionary segment (the rx-separatrix of the saddle-focus moves to the stable cycle embrac- 
ing all states of equilibrium, and the cr)-separatrix twists from the unstable cycle embrac- 
ing the stable focus). Since at h (1 the a-separatrix (line ,tf (7) proceeds into the 
stable node in the region I I I, the state of eq~librium in the region I I I remains stable 
under the variation of parameters along the dlscriminant curve and the infinity remains 

unstable, while the limit cycles can vanish over the interval 0 ( L < c(? only when a 

merger of the limit cycles takes place followed by supression of the double cycle.This 
can be realized only due to an intermediate bifurcation, i. e. the appearance at i, 

t-1 x.. %I (Fig. 2e) of a separatrix loop formed from the CC- and o-separatrices of the 
matched saddle-focus. The separatrix loop is unstable from within and from the outside, 
and can be regarded as a singular limit cycle with a state of equilibrium on it. It sepa- 

rates the structures with an unstable limit cycle embracing the state of equilibrium in 
the region I I I from the structures with an unstable cycle embracing all states of equi- 
librium. 

When the value of i, decreases to h -- )i, (Fig. 2f), an unstable limit cycle appears 
from within the loop and on further decrease in h and collapse of the loop, an unstable 

limit cycle grows from the loop (Fig. 2g) and embraces all states of equilibrium (the L - 
separatrix passes into the stable focus in the region I II, the o)-separatrix twists from the 
unstable limit cycle embracing both states of equilibrium and no states of equilibrium 
exist between the cycles). At certain h - h, < hl (Fig. 2h) a semistable double limit 
cycle necessarily appears and vanishes when h decreases. On further decrease in the 

value of h the foci become nodes, and the structure which arises (Fig. 2i) is quantitativ- 

ely equivalent to the structure at 1” :- 0. 
5.3. Let us consider the structures within the discriminant curve at 11, il; h < x2. For 

the values of the parameters belonging to the discriminant curve itself and for the seg- 

ments intercepted by the CL- and to-separatrices on the matching line, the condition 

{s& > (s,)~,, holds (the focus is surrounded by an unstable limit cycle) and the inequality 

cannot be violated at h ho const by changing CT. It is preserved, in particular, for 

the structure at the point of intersection of h = ?i,, with the axis of symmetry CT - hi-,, - 
?/,, -0 (where r0 and ?/,, are the coordinates of the middle point of the falling segment of the 

characteristic). At this point the phase diagram is symmetrical with respect to the point 
.rtil ?J~, , con~quently we also have an unstable limit cycle su~o~ding the stable focus 
in the region I. This qualitative pattern inside of the region bounded by the discrimi- 
nant curve cannot be affected by the change in o - This implies that, when one moves 

away from the discriminant curve in the inward direction and the matched state of equi- 
librium of the saddle-focus type is disrupted, then a saddle appears in the region I I and 
a stable focus in the region I, accompanied by an unstable limit cycle. 

The structure of the ~rtitioning of the phase space at hl < 2, < a2 will contain three 

limit cycles ; a-separatrices of the saddle move towards a stable cycle embracing all 

three states of equilibrium, the cu-separatrices twist from the unstable cycles embracing 

the foci in the regions I and I II. When h---h, , the upper and lower separatrix loops are 

formed sim:rltaneously and unstable limit cycles appear in them. When h decreases 



Qualitative investigation of a piecewise linear system 699 

from A. =.=: h, , an unstable limit cycle appears from the double loop and embraces all 

states of eq~~briu~ 
Since when h < l/4 (a, - 1)* the system has no limit cycles (regions I and I II are 

“crossed out” by the integral straight lines of the linear nodes), the stable and unstable 

cycles must vanish on the interval I/* (a i - 1)2 < h < h, (see Fig. 2i). A bifurcation 

curve of the double cycles must exist inside the discriminant curve to the left of the 
segment of the separatrix loops. By virtue of the symmetry mentioned previously, the 

curve of double cycles intersects the sides of the discriminant curve at one and the same 

value of h = X2. 
5.4. The bifurcation curve corresponding to the merger of the stable and unstable 

cycles (double cycle curve) begins at the points at which h = h* on the lines L, 3 (5 - 

hzi - yi = 0 and L, z u - hq - ys = 0 and is situated in the case of a single state 

of eq~libr~um, respectively, below and above the two straight lines L, = 0 and L, = 0 
(in the region L,L, > 0). When h = & , both branches of the double cycle curve inter- 
sect (below and above) the discriminant curve and pass into each other within the dis- 

criminant curve. 
The double cycle curve separates, on the interval 

& < h < h+ in the region LIL1 > 0 , a region near 

Li = 0 and L, = 0 and for the points belonging to 
this region we have one stable state of equilibrium and 
two limit cycles in the phase space. 

5.5. If the focus-type state of equilibrium lies on 

if the falling segment of the characteristic (region Lii, < 

0, h > CQ on the parameter plane), then a unique stable 
Fig. 4 limit cycle exists. The existence of at least one cycle 

is obvious (the state of equilibrium and the infinity are 

unstable). The uniqueness follows from the fact that the exponential index in (3.3) and 
(3.4) varies monotonously, and this in turn is caused by the fact that the focus lies on 

the falling segment of the characteristic (when s o increases, the parameters z1 and zs 

also increase, while z,, zs and 8 decrease) and, that the successor function is differen- 

tiable at the matching point. 
5.6. Figure 4 shows how the ha-parameter space is divided into regions with differ- 

ent qualitative structure of the phase space. The numbers in the round and square bra- 
ckets (the figures indicate the number of limit cycles) denote the regions. The sequence 
of the qualitative structures along the bifurcation line L, = 0 is shown in Fig. &Figure 
3 uses the same num~ring system as Fig. 4 to designate the coarse qualitative structures 
corresponding to the various regions of the phase space. The fine structures in Fig. 3 
denoted by the double numbers correspond to the bifurcation curves in Fig. 4, separating 

the relevant regions. 
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Two-frequency oscillations of a conservative system with n degrees of freedom 
are studied. The problem is reduced to investigate canonical systems describing 
resonance phenomena. Single-frequency and multi-frequency oscillations were 

studied earlier in [ 1 - 31. 

1. Let us consider a conservative system with n degrees of freedom which has a sta- 
ble state of equilibrium and executes relatively small motions in the neighborhood of 

this state. The differential equations of motion of the system have the form 

i- CikQk) = - 5 (1.1) 
k=l k,j=l 

k il [ .$ a$’ (qkqiqs” -I- qrrqplJ f $ cg%,qjqs] - . (i = I,& . . . n) 
3 3 

Let the system undergo two-frequency oscillations of frequencies ml and @z(% 2 01). 
We shall consider the two-frequency resonant solutions of the system (1.1). We define 
the degree of the resonance terms in the right-hand sides of (1. l), as the resonance rank. 
The ratio o2 / w, for these terms is essential. 


